Il dossier inquadra il fenomeno del maremoto nel Mediterraneo e in Italia, a partire dalle differenze rispetto agli tsunami che si verificano negli Oceani.
Una pagina è dedicata agli eventi che storicamente hanno interessato l’area del Mediterraneo e l’Italia, da cui è raggiungibile anche un approfondimento sul maremoto che si è verificato a Stromboli nel 2002.
La terza pagina del dossier presenta il sistema di monitoraggio e allertamento attivo sul territorio nazionale mentre la quarta ne anticipa i possibili sviluppi, raccontando la partecipazione italiana – e in particolare del Dipartimento della Protezione Civile – al progetto NEAMTWS-North Eastern Atlantic & Med Tsunami Warning System, per la costituzione di un sistema di allertamento per il Nord Est Atlantico, Mediterraneo e Mari collegati. Sebbene calato sulla realtà geografica specifica, questo sistema prende a modello quello già operante nell’area del Pacifico, dei Caraibi e dell’Oceano Indiano, a cui dedichiamo un focus nell’ultima pagina.
Per mettere alla prova le conoscenze della popolazione rispetto a questo tema, è inoltre disponibile su questo sito internet il test “Rischio maremoto e prevenzione. Sei in campo, in panchina o in tribuna?”.
Cos’è un maremoto e come si verifica. I maremoti, o tsunami, sono fenomeni naturali che possono essere causati da eruzioni vulcaniche, frane sottomarine o forti terremoti con epicentro in mare. Quando i terremoti si verificano in mare, grandi masse d’acqua sono spostate con violenza dal basso verso l’alto, in corrispondenza della zona di frizione o subduzione delle placche tettoniche. Gli tsunami sono infatti caratterizzati da sequenze di onde lunghissime in cui la distanza tra una cresta d’onda e l’altra può raggiungere anche un centinaio di chilometri. Questi treni d’onde possono viaggiare per migliaia di chilometri nel mare aperto con una velocità che dipende dalla profondità dell’acqua. In aree marine profonde 4-5000 metri le onde possono viaggiare anche alla velocità di 800 chilometri orari.
In generale, la velocità di un’onda decresce rapidamente al decrescere della profondità dell’acqua. Tuttavia, mentre nelle acque basse la prima onda rallenta, la seconda, distante anche un centinaio di chilometri dalla prima, viaggia ancora alla velocità iniziale. Il risultato è che la distanza tra le onde decresce rapidamente e la massa d’acqua spostata si accumula, formando onde che si innalzano vertiginosamente.
Pochi minuti prima che l’onda si abbatta sulla costa, il suo arrivo provoca una forte risacca, che fa indietreggiare il mare anche di decine o centinaia di metri, mettendo allo scoperto una grande striscia di fondale marino. Il ritiro delle acque marine è un segnale premonitore dell’onda che sta per abbattersi sulla costa. L’onda di tsunami, che nell’oceano era alta solo pochi centimetri, può alzarsi, fino a raggiungere in alcuni casi i 30 metri sul livello della spiaggia. Le onde distruggono tutto quello che trovano davanti a sé, abbattendo costruzioni e trasportando verso l’interno per centinaia di metri ogni oggetto, anche estremamente pesante come automobili, camion, treni, battelli o navi di medio tonnellaggio.
I maremoti nel Mar Mediterraneo e negli Oceani. La forza di uno tsunami dipende, nel caso la sua origine sia legata ad un terremoto sottomarino, dalla magnitudo del terremoto e, successivamente, dalla capacità di spostare con violenza grandi masse d’acqua dal basso verso l’alto. Nelle aree di collisione tra placche tettoniche immediatamente prossime agli oceani si possono generare terremoti con magnitudo e frequenza di gran lunga superiori rispetto a quelli registrati nell’area mediterranea e le masse d’acqua in gioco sono notevolmente maggiori di quelle presenti in un bacino chiuso e meno profondo come il Mar Mediterraneo. Per questo, se si producesse un maremoto nel Mar Mediterraneo, non avrebbe sicuramente la stessa forza e intensità di uno che si sviluppa in un oceano. Ciò non toglie però, come storicamente dimostrato, che nell’area mediterranea a seguito di eventi sismici particolarmente energetici o di fenomeni franosi sottomarini, possano originarsi maremoti distruttivi anche a causa della forte urbanizzazione delle aree costiere.
Il Mediterraneo presenta un rischio rilevante di maremoto, non soltanto a causa della sismicità dell’intera area, ma anche per la presenza di numerosi edifici vulcanici emersi e sommersi. Il rischio dovuto ai maremoti può essere studiato considerando scenari di futuri maremoti, fondati anche sulle conoscenze storiche. I risultati di simulazioni numeriche elaborate negli anni e la conformazione stessa del bacino del Mediterraneo, evidenziano la differenza sostanziale con i maremoti che si originano negli oceani: i tempi di propagazione delle onde sono molto corti. A differenza del Pacifico e dell’Oceano Indiano, nel Mediterraneo la maggior parte delle possibili zone sorgente si trovano molto vicino alla costa ed il problema principale è quindi quello di poter dare l’allarme in brevissimo tempo (es. entro i primi 10 minuti). Da questo si deduce come il sistema di allertamento per l’area mediterranea deve necessariamente essere diverso da quello attivo nell’Oceano Pacifico, che costituisce comunque il modello di riferimento da seguire in questo settore.
Raffigurazione di un maremoto
Un elemento di fondamentale importanza da ricordare è che l’impatto del maremoto, così come di qualsiasi altro rischio, può essere mitigato attraverso la costruzione di strutture istituzionali e legislative, nonché il coinvolgimento e la diretta partecipazione dell’intera comunità sociale. Infatti un sistema di allertamento per la difesa dagli tsunami, oltre alla capacità della comunità scientifica di prevedere il possibile arrivo di un’onda, non può prescindere dalla consapevolezza del rischio da parte della popolazione e dalla conoscenza delle norme di comportamento da adottare in caso di emergenza.
I maremoti nel Mediterraneo. L’assetto tettonico del Mar Mediterraneo che risulta dalla collisione tra la placca euroasiatica e quella africana è molto complesso. Informazioni storiche, studi di settore e dati sismotettonici hanno permesso di identificare le maggiori aree sorgenti di tsunami, dimostrando che quasi tutte si collocano molto vicino alla costa o solo parzialmente sulla terra emersa; di conseguenza, il tempo di ritardo tra la generazione dello tsunami e l’arrivo dell’onda sulla costa è piuttosto breve. Le sorgenti più pericolose di tsunami nell’area mediterranea si trovano in coincidenza con la struttura Algerino-Tunisina (direzione E-W da Gibilterra verso lo stretto di Sicilia), Ibleo-Maltese (50 km dalla costa est siciliana) e l’Arco Ellenico (direzione NW-E da Cefalonia a Rodi).
Nella storia i maremoti che hanno interessato le coste del Mediterraneo sono stati 127; di questi, 90 circa si sono verificati nell’area del Mediterraneo centrale, ossia in Italia, Grecia orientale, Albania, Croazia e Algeria. La maggior parte degli eventi ha avuto carattere locale ed ha provocato gravi danni nelle vicinanze dell’area di origine; altri invece hanno avuto magnitudo catastrofica ed impatto regionale. In particolare, i maremoti più distruttivi dell’area del Mediterraneo si sono verificati in Grecia e in Italia, dove la maggior parte degli tsunami che si sono verificati è di origine sismica.
Raffigurazione di un'onda gigantesca
I maremoti in Italia. Storicamente si sono originati tsunami nell’area tirrenica e nell’area ionica. Quest’ultima è stata interessata da maremoti innescati da eventi sismici nelle isole greche dell’Egeo e da eventi nella costa calabra, nel crotonese. Anche la costa orientale della Sicilia è stata interessata da onde anomale, tra cui quella provocata dal terremoto dell’11 gennaio 1693 nella Val di Noto. La scossa, di magnitudo pari a 7.4, colpì la Sicilia sud-orientale e l’onda di maremoto che seguì la scossa provocò ingenti danni alle città di Catania e Augusta, nonché in maniera minore a Messina. Furono stimate intorno alle 35mila vittime del terremoto e del maremoto. Altro esempio è il terremoto di Messina del 28 dicembre 1908 di magnitudo 7.1 che causò un violento tsunami che investì coste siciliane e calabre. Circa 85.000 persone persero la vita, molte delle quali a seguito dell’onda di maremoto, alta una decina di metri.
Oltre che da fenomeni sismici, le onde di maremoto possono essere provocate anche da altre cause, come frane sottomarine. Lo dimostra l’esperienza di Stromboli nel 2002.
La rete per il monitoraggio sismico del territorio nazionale. La maggior parte dei maremoti che storicamente si sono verificati in Italia sono di origine sismica. Per questo motivo, anche per il rischio tsunami, uno dei centri di competenza di riferimento per il Dipartimento è l’Istituto Nazionale di Geofisica e Vulcanologia, responsabile del monitoraggio e della comunicazione degli eventi sismici che avvengono sul territorio italiano. In particolare, i segnali rilevati dalle stazioni sismiche distribuite sul territorio nazionale sono centralizzati nella sala di monitoraggio del CNT-Centro Nazionale Terremoti dove viene effettuata un’analisi in tempo reale dei segnali acquisiti. Ogni evento sismico di magnitudo superiore a 2.5 che si verifica sul nostro territorio viene comunicato alla SSI-Sala Situazioni Italia del Dipartimento della Protezione Civile.
Per migliorare la localizzazione dei terremoti, a partire dal 2002 l’INGV ha iniziato ad installare nuovi sensori a banda larga e a tre componenti che rappresentano oggi una delle realtà tecnologiche più avanzate a livello mondiale. Oltre le caratteristiche innovative dei sismometri, la Rete Sismica Nazionale è all’avanguardia per gli aspetti relativi alla trasmissione dati in real time, che utilizza sia sistemi di terra (internet e intranet), sia sistemi satellitari (tecnologia VSAT Libra della Nanometrics). Per il monitoraggio sismico del territorio italiano, alla rete sismica gestita dall’INGV, si affiancano le reti sismiche a livello euro-mediterraneo gestite da altri Paesi, anche se la loro copertura è estremamente disomogenea sia per numero di stazioni sia per le caratteristiche dei sensori installati.
Nell’ Accordo Quadro che il Dipartimento ha sottoscritto con l’Ingv il 2 febbraio 2012 e, in particolare, nell’Allegato A relativo alle attività di servizio – di cui fanno parte le attività di monitoraggio e di formazione, informazione e divulgazione – per la prima volta si fa esplicito riferimento al rischio maremoto, che viene individuato, come un tema importante al pari del rischio sismico e vulcanico. Ciò dimostra come anche su questo specifico rischio si stia avviando una rete di collaborazione e scambio di esperienze con la comunità scientifica italiana.
L’accordo con JRC-Joint Research Centre della Commissione Europea. Su questo rischio il Dipartimento si sta attivando anche per rafforzare la cooperazione con la Commissione Europea. Un primo passo è stato fatto il 12 aprile scorso, con la firma di un accordo di collaborazione della durata di quattro anni con l’istituto JRC-Joint Research Centre della Commissione Europea, finalizzato a sviluppare e implementare congiuntamente un sistema di pre-allertamento in caso di tsunami nel Mediterraneo. Tra gli obiettivi dell’accordo, la condivisione di tutti i dati e di tutte le conoscenze già disponibili e di quelle che si andranno progressivamente acquisendo nel corso degli studi. In particolare, nell’ambito di tale collaborazione, il JRC ha messo a disposizione del Dipartimento i propri strumenti informatici per l’allertamento e il monitoraggio in tempo reale degli tsunami, incluso il database globale che, nella zona del Mediterraneo, contiene circa 8.000 scenari risultanti dall’elaborazione dei dati disponibili per le aree storicamente interessate da tale fenomeno. Insieme al database globale, è stato inoltre fornito il software di analisi degli tsunami per il calcolo del tempo di propagazione e dell’altezza dell’onda. Questi sistemi sperimentali sono stati ideati per supportare gli operatori coinvolti nella gestione dell’emergenza nella fase decisionale sull’eventuale evacuazione di alcune aree del Paese.
La Rete mareografica nazionale e il monitoraggio dei fondali marini. Oltre ad una rete di monitoraggio sismico del territorio nazionale, in Italia è presente una rete mareografica formata da 27 stazioni uniformemente distribuite lungo le coste Italiane e localizzate prevalentemente nei porti. In particolare a: Trieste, Venezia Lido, Ancona, Ravenna, Ortona, Vieste, Bari, Otranto, Taranto, Crotone, Reggio Calabria, Messina, Catania, Porto Empedocle, Lampedusa, Palermo, Palinuro, Salerno, Napoli, Cagliari, Carloforte, Porto Torres, Civitavecchia, Livorno, Genova, Imperia e La Spezia.
Tutte le stazioni memorizzano e trasmettono i dati raccolti in tempo reale al centro dati dell’ISPRA, l’Istituto Superiore per la Protezione e la Ricerca Ambientale, con sede a Roma che provvede alla costruzione di database storici, con le osservazioni in tempo reale, dati relativi alle maree, etc., pubblicati annualmente sul bollettino dell’Istituto. Il sistema di trasmissione dati che è ora utilizzato per la rete mareografica si avvale della rete GSM/GPRS.
Per definire gli elementi di pericolosità dei fondali dei mari italiani, mitigare il rischio e gestire le emergenze è nato nel 2007 il progetto quinquennale MaGIC, finanziato dal Dipartimento della Protezione Civile, nell’ambito di un Accordo di Programma Quadro con il Consiglio Nazionale delle Ricerche-CNR.
Il sistema di allertamento attivo sul territorio nazionale. Anche per il rischio da maremoto, il sistema di allertamento attualmente attivo in Italia è quello istituito e regolamentato dalla Direttiva del Presidente del Consiglio dei ministri del 27 febbraio 2004,inizialmente riferita solo al rischio meteo-idrogeologico ed idraulico e successivamente estesa a tutti i rischi, naturali e tecnologici.
Il sistema, già organizzato ed operativo a livello nazionale, identifica la catena di responsabilità all’interno delle diverse componenti della rete dei Centri Funzionali. Per gli eventi di tipo C – a cui possiamo associare i maremoti, per estensione e consistenza – è il Dipartimento della Protezione Civile l’unica struttura che ha l’obbligo di segnalare ed emettere bollettini ed avvisi di criticità o di allarme e di attivare il Servizio Nazionale di Protezione Civile. E’ infatti dotato di un suo Centro Funzionale – il Centro Funzionale Centrale – che ha anche il compito di produrre linee guida, procedure e standard operativi. Ai Centri di Competenza specialistici è invece affidata la responsabilità scientifica di valutazione e comunicazione dei dati necessari a definire il livello di rischio per la popolazione, le infrastrutture, le attività e l’ambiente.
Questo sistema sarà potenziato quando entrerà in funzione il progetto di NEAMTWS-Tsunami Warning System per l’allertamento nell’area del Nord-Atlantico, Mediterraneo e Mari collegati.
Il sistema di allertamento globale. I sistemi di allertamento da rischio maremoto o Tsunami Warning System hanno la funzione di raccogliere, distribuire ed interpretare, in maniera continuativa, tutti i segnali sismici disponibili e i dati relativi al livello del mare per individuare l’eventuale esistenza e propagazione di un’onda di maremoto. In base alle informazioni acquisite, predispongono tempestivi e chiari avvisi di allertamento per l’area di loro competenza, condividono e scambiano dati e informazioni con altri centri di ricerca nazionali e internazionali.
Il primo sistema di allertamento attivato comprende l’area dell’Oceano Pacifico - Pacific Tsunami Warning System e costituisce il modello di riferimento in questo settore. Nato nel 1968, è coordinato dall’IOC – Intergovernmental Oceanographic Commission, l’ente istituito dall’Unesco nel 1960 per promuovere la cooperazione internazionale nell’ambito della ricerca e della tutela degli oceani e delle aree costiere.
In seguito al maremoto del Sud-est asiatico del 26 dicembre 2004, l’IOC ha ricevuto il mandato di aiutare anche tutti gli stati membri dell’Unesco che si affacciano sull’Oceano Indiano a costituire il proprio sistema di allertamento dei maremoti (IOTWS Indian Ocean Maremoto Early Warning System). Ha inoltre iniziato a coordinare il processo di progressiva istituzione di analoghi sistemi di allertamento (EWS – Early Warning System) nei Caraibi (Caribe EWS) e nel Nord Est Atlantico, Mediterraneo e Mari collegati (NEAMTWS – North Eastern Atlantic & Med Tsunami Warning System).
Il progetto NEAMTWS per l’allertamento dell’area del Mediterraneo. Il progetto NEAMTWS prevede la costituzione di un sistema di allertamento da rischio maremoto per il Nord Est Atlantico, Mediterraneo e Mari collegati simile a quello già operante nell’area del Pacifico, dei Caraibi e dell’Oceano Indiano. Il progetto prevede che il NEAMTWS si strutturi in:
- reti di monitoraggio intergrate a scala internazionale (sismico, mareografico, onda metrico);
- una catena di allertamento composta da National Focal Points (NFPs, Punti di Contatto Nazionali), Centri nazionali di allertamento (NTWCs, National Tsunami Warning Centres) e Centri regionali di allertamento (TWPs, Tsunami Watch Providers)
- nuove infrastrutture di allertamento e di comunicazione;
- nuove procedure per l’allertamento e la comunicazione.
Vista la complessità del progetto, l’Unesco e in particolare l’IOC ha costituito una serie di Gruppi di lavoro con il compito di affrontare tematiche diverse: valutazione del pericolo, del rischio e degli scenari; misurazioni sismiche e geofisiche; misurazioni del livello del mare; consulenza, mitigazione e consapevolezza pubblica. Nell’organizzazione del sistema, sono state invitate a partecipare le principali istituzioni competenti.
L’Italia nel progetto NEAMTWS. Nel 2009 il Dipartimento della Protezione Civile ha proposto la sua candidatura come Centro regionale di allertamento (TWP, Tsunami Watch Providers), insieme a Portogallo, Francia, Grecia e Turchia, ovvero come punto di collegamento nella catena del sistema di allertamento che assicuri la disseminazione dei messaggi di allerta non solo verso la sua catena di allertamento nazionale, ma anche verso gli altri Paesi minacciati dall’evento in corso.
La proposta del Dipartimento, che è in via di attuazione fa riferimento, come modello organizzativo cui ispirarsi, a quanto è attualmente operativo a scala nazionale per il monitoraggio di fenomeni di maremoto, ossia al sistema nazionale di allertamento costituito dalla rete dei centri funzionali. La proposta suggerisce l’adeguamento ed il miglioramento degli standard operativi delle reti di monitoraggio, l’adeguamento necessario delle procedure operative e la distribuzione delle informazioni raccolte ai paesi costieri del Mediterraneo che sceglieranno di farsi allertare dall’Italia (piuttosto che da uno degli altri quattro candidati), secondo standard applicativi definiti nell’ambito del sistema NEAMTWS.
Il progetto NEAMTIC. Nell’ambito delle attività coordinate dall’IOC dell’Unesco, nel 2011 è stato avviato il progetto Neamtic - Tsunami Information Centre for the North-eastern Atlantic and the Mediterranean and connected seas – per realizzare un centro di informazioni sul rischio tsunami e sul sistema di allertamento nell’area del Mediterraneo. I Paesi partner di progetto sono Francia, Italia, Grecia e Portogallo; a cui si aggiungono, come sostenitori, anche la Turchia e l’Islamic Educational, Scientific and Cultural Organization-Isesco. Il progetto ha la durata di due anni ed è stato finanziato dalla Direzione generale per gli Aiuti umanitari e la protezione civile (ECHO) dell’Unione europea. Tra i suoi obiettivi: fornire alle autorità di protezione civile informazioni sul sistema di allertamento per il rischio tsunami e sulle attività avviate nello specifico da IOC e dall’Unione Europea; promuovere percorsi di formazione su questi temi; aumentare la consapevolezza dei cittadini, soprattutto dei giovani, sul rischio maremoto per favorire l’adozione di comportamenti di auto-protezione; identificare, condividere e diffondere buone pratiche sulla pianificazione, sui metodi e sulle procedure per rafforzare l’attività di prevenzione del rischio; favorire il legame tra Unione Europea e IOC sulle azioni intergovernamentali e internazionali da intraprendere nel quadro di sviluppo del progetto Neamtws. I prodotti di informazione e comunicazione ad oggi realizzati nell’ambito del progetto sono disponibili sul sito http://neamtic.ioc-unesco.org/
Tsunami Warning System. Il modello dell’Oceano Pacifico
Nell’isola di O’ahu, alle Hawaii, dal 1948 è operativo il Ptws - Pacific Tsunami Warning System, un sistema di allertamento in caso di tsunami, costituito da una rete di 26 Stati del Pacifico in cui operano 30 stazioni tidali, ovvero stazioni che misurano l’altezza delle maree.
Il Ptws può usufruire del supporto di un altro centinaio di stazioni gestite dal Noaa - National Oceanic and Atmospheric Administration ed è in grado di ricevere dati da centinaia di stazioni sismiche in tutto il mando, attraverso il Neic - National Earthquake Information Center del Colorado. Il Ptws coordina inoltre le attività dei centri di allertamento tsunami di Alaska, Polinesia, Cile, Giappone e Russia.
Il recente tsunami del Giappone
Il sistema è in grado di calcolare il tempo di arrivo della prima onda di tsunami attraverso un modello che calcola la velocità delle onde, tenendo conto della profondità del bacino. Quando in un’area dell’Oceano Pacifico si genera un terremoto con magnitudo uguale o superiore a 7 della scala Richter, in meno di mezz’ora il Ptws è in grado di identificare l’esatta localizzazione dell’epicentro e la magnitudo del terremoto. Parte così l’allerta tsunami per tutte quelle aree che potrebbero essere colpite in meno di tre ore. Poiché il tempo necessario per avere conferma dello tsunami è più lungo di quello che serve a mette in atto le procedure di evacuazione, quest’ultime vengono immediatamente avviate.
Di solito la prima indicazione di un’onda di tsunami arriva dalla stazione tidale più vicina al luogo in cui le onde di marea appaiono più grandi e più rapide rispetto a quelle registrate normalmente. Tuttavia, il segnale di una singola stazione non è sufficiente: se l’anomalia non viene confermata dal Ptws attraverso la registrazione di altri segnali anomali, l’allertamento e l’avviso vengono annullati. Se invece lo tsunami viene confermato, si passa immediatamente dalla fase di attenzione a quella di allertamento e poi a quella di allarme, secondo questa procedura:
- Tre ore prima dell’arrivo della prima onda le sirene lanciano il segnale di allerta. La popolazione sa che deve accendere la radio e seguire l’evoluzione del fenomeno attraverso le notizie e le indicazioni diffuse da tutte le stazioni.
- Le sirene suonano di nuovo due ore prima dell’arrivo previsto, e poi ancora un’ora prima e mezz’ora prima. Questi segnali sono sempre accompagnati dalle informazioni diffuse dalle radio.
In caso di necessità è il personale della Protezione Civile che coordina le operazioni di evacuazione della popolazione, partendo dalle aree di costa più bassa che possono essere colpite per prime.
Il sistema di allertamento del Pacifico per la difesa dagli tsunami, oltre alla capacità della comunità scientifica di prevedere il possibile arrivo di un’onda, si fonda anche sulla consapevolezza del rischio da parte della popolazione e sulla conoscenza delle norme di comportamento da adottare in caso di emergenza. Accanto ad una serie di misure di prevenzione di tipo strutturale adottate sulle isole Hawaiane – ad esempio, edifici abitati dal primo piano in su e piano terra dedicato a parcheggi aperti – la strategia scelta dal Governo prevede la diffusione capillare di informazioni sul rischio e sui piani di emergenza, sia tra i residenti che tra i turisti.
Nessun commento:
Posta un commento